When is the use of insulin mandatory: DKA, HHS, CKD, Pregnancy

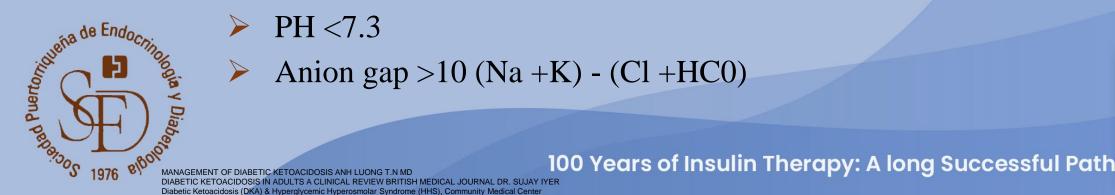
Dr. Harry Jimenez, FACE Medical Director, HIMA San Pablo Bayamon

Disclosure

- Harry Jiménez MD, FACE
 - I have no conflict with the information that I am going to give in this conference

Objectives

- Discuss the insulin use on DKA, HHS, CKD
- Review the use of insulin in pregnancy



DKA Triad

Diabetic Ketoacidosis (DKA) can occur in both type 1 & 2 diabetes mellitus.

- \triangleright Overall Mortality rate is 0.2 2%
- ➤ It presents with three common characteristics:
 - ➤ Hyperglycemia: Blood glucose > 250mg
 - > Hyperketonemia: Plasma acetone positive
 - ➤ Metabolic Acidosis

Classifying the Severity

		Mild	Moderate	Severe
	Plasma Glucose	>250	>250	>250
	Arterial pH	7.25 - 7.30	7.00 - <7.24	<7.0
	Serum Bicarb	15 – 18	10 - <15	<10
	Urine Ketone	Positive	Positive	Positive
	Serum Ketone	Positive	Positive	Positive
	Anion Gap	>10	>12	>12
weña (Mental Status	Alert	Alert/Drowsy	Stuporous
Puertoning Puertoning	1976 RIBERTO MANAGEMENT OF DIABETIC KETOACIDOSIS ANH LUONG T.N MD	100 Years o	f Insulin Therapy: A long	Successful Path

Etiology

- Inadequate insulin treatment or noncompliance.
- New onset diabetes (20-25%)
- Acute illness
 - Infection (30% to 40%)
 - CVA
 - Acute myocardial Infraction Acute Pancreatitis
- Drugs

Proposition of the Proposition o

- Clozapine or olanzapine
- Cocaine
- Lithium
- **Euglycemic DKA**
 - **SGLT2** Inhibitors
 - Insulin Pump
 - Pregnancy
 - **Pancreatitis**
- **Terbutaline**
- Steroids

Laboratory Evaluation in DKA

- ➤ Blood test for glucose every 1 hour
- **ABG**
- ➤ Serum electrolytes every 2 4 hours
- Serum ketones (3-hydroxybetabutyrate)
- **≻**CBC
- **≻** Cultures
- ➤ Amylase
- ➤ Chest X-Ray

Hyperglycemic Hyperosmolar Syndrome (HHS)

- ➤ Complication of type 2 diabetes
 - > Adults

Denagos de En

- ➤ Obese adolescents
 - > Early in the diagnostic of the condition
- ➤ When glucose cannot move into the cell, it accumulates in the bloodstream (leading to hyperglycemia and hyperosmolality)
- Since insulin is still produced in type 2 diabetes, it is sufficient to prevent lipolysis (which causes ketone byproducts)
- >HHS does not cause ketoacidosis
- ➤ Overall Mortality up to 20%

Hyperglycemic Hyperosmolar Syndrome (HHS)

- The serum osmolality is determined by the formula 2Na + Glucose /18 + BUN / 2.8. Osmolarity >320 mOsm/L
- The glucose level in HHS is usually above 600 mg/dL.
- ➤ Absence of significant ketoacidosis,
 - higher level of insulin with an associated lower level of glucagon
- ➤ Moderate to severe dehydration.
- Presence of neurological signs.

Hyperglycemic Hyperosmolar Syndrome (HHS) Etiology

- ➤ Infection 50% 60%
 - Respiratory
 - ➤ Gastrointestinal
 - Genitourinary
- **≻** Medicine
 - > Thiazide
 - ➤ Beta Blocker
 - > Steroid
 - ➤ Atypical antipsychotics
- **CVD**
 - > Stroke
 - > MI
- ➤ Obese diabetic adolescent

Laboratory Evaluation in HHS

- ➤ Blood test for glucose every 1 hour
- **>**ABG
- ➤ Serum electrolytes every 2 4 hours
- **≻**CBC
- **≻** Cultures
- **≻**Amylase
- ➤ Chest X-Ray
- **EKG**

Complete initial evaluation. Check capillary glucose and serum/urine ketones to confirm hyperglycemia and ketonemia/ketonuria. Start IV fluids: 1.0 L of 0.9 percent NaCl per hour.* Assess need for bicarbonate **IV** fluids Potassium Insulin Determine hydration status Uncomplicated Establish adequate pH <6.9 pH ≥6.9 IV route DKA-SC route renal function (urine output ~50 mL/hr) Mild Cardiogenic Insulin: Rapid-acting insulin: No HCO₃ Severe Dilute NaHCO3 Regular 0.1 U/kg hypovolemia 0.3 U/kg, then If serum K is <3.3 mEa/L. hypovolemia shock (100 mmol) in 400 mL 0.2 U/kg one hr later as IV bolus hold insulin and give H₂O with 20 mEq KCl. 20-40 mEq K/hr until Infuse over two hrs . K >3.3 mEq/L Administer Hemodynamic 0.1 U/kg/hr IV Evaluate Rapid-acting insulin: 0.9 percent corrected monitoring/ continuous insulin 0.2 U/kg SC every two hrs serum Na*¶ NaCl (1.0 L/hr) infusion∆ pressors If K is >5.3 mEa/L, Repeat NaHCO3 do not give K but check administration every serum K every two hrs two hrs until pH >7.0. Monitor serum K Serum Na¶ Serum Na¶ If serum glucose does not fall by 50-70 mg/dL in first hour, Serum Na¶ every two hrs. double IV or SC insulin bolus high normal low 0.45 percent NaCl 0.9 percent NaCl When serum glucose reaches 200 mg/dL, If K is 3.3-5.3 mEa/L, (250-500 mL/hr) (250-500 mL/hr) reduce regular insulin infusion to 0.02-0.05 U/kg/hr IV, give 20-30 mEq/K or give rapid-acting insulin at 0.1 U/kg SC every two hours. depending on depending on in each liter of IV fluid Keep serum glucose between 150 and 200 mg/dL until to keep serum K volume state volume state resolution of DKA.§ between 4-5 mEq/L When serum glucose reaches 200 mg/dL, Check electrolytes, BUN, venous pH, creatinine and change to 5 percent dextrose with alucose every 2-4 hrs until stable. After resolution of 0.45 percent NaCl at 150-250 mL/hr DKA and when patient is able to eat, initiate SC multidose insulin regimen. Continue IV insulin infusion for 1-2 hr after SC insulin begun to ensure adequate plasma insulin levels. In insulin naïve patients, start at 0.5 U/kg to 0.8 U/kg body weight per day and adjust insulin as needed. Look for precipitating cause(s).

Differences in DKA & HHS

- >DKA:
- Correct acidosis
- ➤ Lower blood glucose
- ➤ Rehydrate
- Correct electrolytes
- > Resolve cause
- **➤ Criteria for resolved DKA:**
- **>**pH > 7.3
- ➤ Bicarbonate ≥ 15 mEq/L
- ➤ Blood glucose < 200 mg/dL
- ► Anion gap < 12
- ➤ Patient is able to eat

- >HHS:
- ➤ Lower blood glucose
- ▶ Rehydrate
- ➤ Correct electrolytes
- > Resolve cause
- **▶** Criteria for resolved HHS:
- ➤BG **200 300** mg/dL
- > Patient is able to eat

DKA Nomogram

DIABETIC KETOACIDOSIS (DKA) NOMOGRAM - ADULT

Insulin regular (HUMULIN R, NovoLIN R) 50 Units in sodium chloride 0.9% 50 mL infusion

Start insulin drip at 0.1 units/kg/hr.

Target blood glucose (BG): 150 - 200 mg/dL until patient is mentally alert.

TITRATION INSTRUCTIONS:

THE THE THE PROPERTY.	
BG change from Previous Value:	Insulin Infusion Rate Change & Calculation:
If BG is less than 70 mg/dL:	Stop insulin infusion. Repeat BG measurement STAT x1 to confirm. Call
	physician. Give 50 mL of D50W and recheck BG every 15 minutes until BG is
	greater than 100 mg/dL, then restart insulin infusion at 50% of previous rate by
	multiplying by infusion rate by 0.5 and resume every 1 hour BG measurements.
If BG is 70 – 149 mg/dL:	Decrease insulin infusion by multiplying by 0.5
If BG is 150 – 200 mg/dL:	
If previous BG was greater than 200 mg/dL	Decrease insulin infusion by multiplying by 0.5
If previous BG was less than or equal to 200 mg/dL	Continue same infusion rate. No change.
If BG is greater than 200 mg/dL:	
If BG has increased from the previous value	Increase insulin infusion by multiplying by 1.5
If BG has decreased by less than 50 mg/dL from the	Increase insulin infusion by multiplying by 1.5
previous value	
If BG has decreased by 50 – 75 mg/dL from the	Continue same infusion rate. No change.
previous value	
If BG has decreased by 76 – 100 mg/dL from the	Decrease insulin infusion by multiplying by 0.75
previous value	
If BG has decreased by more than 100 mg/dL from	Decrease insulin infusion by multiplying by 0.5
the previous value	

DO NOT stop the insulin infusion unless patient is hypoglycemic with blood glucose less than 70 mg/dL or by physician order.

Notify provider for initiation of immediate or long-acting subcutaneous insulin when DKA has resolved (e.g., pH greater than 7.3; bicarbonate greater than or equal to 15 mEg/L; glucose less than 200 mg/dL; and/or anion gap less than 12) AND patient is able to eat/tolerate enteral nutrition.

Discontinue insulin infusion 2 hours after initiation of intermediate or long-acting subcutaneous insulin.

Proposos de End

HHS Nomogram

HYPEROSMOLAR HYPERGLYCEMIA NOMOGRAM - ADULT

Insulin regular (HUMULIN R, NovoLIN R) 50 Units in sodium chloride 0.9% 50 mL infusion

Start insulin drip at 0.1 units/kg/hr.

Target blood glucose (BG): 200 - 300 mg/dL until patient is mentally alert.

TITRATION INSTRUCTIONS:

BG change from Previous Value:	Insulin Infusion Rate Change & Calculation:
If BG is less than 70 mg/dL:	Stop insulin infusion. Repeat BG measurement STAT x1 to confirm. Call
3 ****	physician. Give 50 mL of D50W and recheck BG every 15 minutes until BG is
	greater than 200 mg/dL, then resume every 1 hour BG measurements. Once BG
	is greater than 200 mg/dL, restart insulin infusion at 50% of previous rate by
	multiplying by 0.5.
If BG is 70 – 199 mg/dL:	Decrease insulin infusion by multiplying by 0.5
If BG is 200 – 300 mg/dL:	
If previous BG was greater than 300 mg/dL	Decrease insulin infusion by multiplying by 0.5
If previous BG was less than or equal to 300 mg/dL	Continue same infusion rate. No change.
If BG is greater than 300 mg/dL:	
If BG has increased from the previous value	Increase insulin infusion by multiplying by 1.5
If BG has decreased by less than 50 mg/dL from the	Increase insulin infusion by multiplying by 1.5
previous value	
If BG has decreased by 50 – 75 mg/dL from the	Continue same infusion rate. No change.
previous value	
If BG has decreased by 76 – 100 mg/dL from the	Decrease insulin infusion by multiplying by 0.75
previous value	
If BG has decreased by more than 100 mg/dL from	Decrease insulin infusion by multiplying by 0.5
the previous value	

DO NOT stop the insulin infusion unless patient is hypoglycemic with blood glucose less than 70 mg/dL or by physician order.

Notify provider for initiation of immediate or long-acting subcutaneous insulin when HHS has resolved (e.g., glucose less than 300 mg/dL) and patient is able to eat/tolerate enteral nutrition.

Discontinue insulin infusion 2 hours after initiation of intermediate or long-acting subcutaneous insulin.

Diagnostic Criteria for GDM

- Test should be done on the 24-28 weeks of gestation
 - The diagnostic test (100 gm 3-hour OGTT)

Fasting	95 mg/dL
1 hour	180 mg/dL
2 hour	155 mg/dL
3 hour	140 mg/dL

One Value exceeding any of these threshold is diagnostic for GDM

Gestational Diabetes Mellitus (GDM) Monitoring

- Before breakfast
- At one or at two hours post prandial after each meal
- Self-Monitoring of Blood Glucose (SMBG) 4 times a day
- Continuous Glucose Monitoring (CGM)

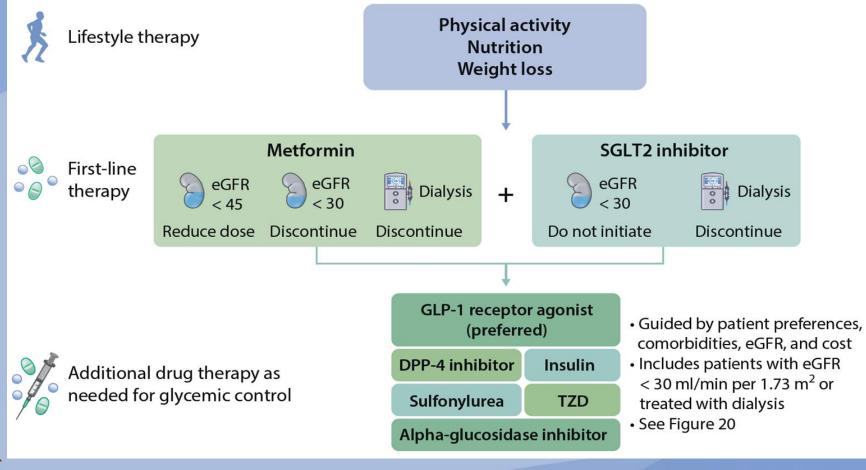
- Minimize maternal and neo-natal morbidity
 - > preeclampsia
 - birth weight > 4000g
 - > \ shoulder dystocia

- > 70% will be controlled with medical nutrition plus exercise therapy
 - Dietitian evaluation and follow up
- > 30% will need pharmacotherapy
 - Metformin
 - Glyburide
 - > Insulin* (1st Choice)
 - 0.7 units to 2 units per kilogram

- Insulin Treatment Criteria
 - Fasting and post prandial hyperglycemia
 - By sonogram
 - Fetal AC > 75th percentile
 - Fetal EFW ≥ 90th percentile
- Insulin Treatment Goals
 - Fasting blood glucose concentration: < 95 mg/dL</p>
 - One-hour postprandial blood glucose concentration: < 140 mg/dL</p>
 - > Two-hour postprandial glucose concentration: < 120 mg/dL

- NPH 10 to 20 units plus 6 to 10 units (lispro or aspart) before breakfast
- If postprandial glucose level are elevated post lunch add 6 to 10 units of rapid acting insulin
- If postprandial glucose level are elevated post dinner add 6 to 10 units of rapid acting insulin
- If the fasting glucose level are elevated and postprandial glucose on targeted range add intermediate insulin at bedtime or with dinner

- ➤ If only the fasting blood concentration is high use 0.2 unit/kg
 - NPH, Insulin Glargine or detemir given before bedtime or before dinner
- If only postprandial blood glucose concentration are high
 - ➢ 6 to 10 units of aspart or lispro before meals
- If both postprandial and pre-prandial blood glucose are high start insulin 0.9 units/kg or 1.0 units/kg
 - In the morning two-third of basal inulin plus one-third rapid acting insulin
 - In the evening one-third of the total dose half basal and half rapid acting insulin


Diabetes CKD Insulin Physiology

- ► Increase insulin resistance
- Reduce Hepatic Insulin Metabolism
- ► Reduce insulin clearance
- > Reduce insulin synthesis

Treatment algorithm for selecting antihyperglycemic drugs for patients with T2D and CKD

Diabetes CKD

>Insulin

- ➤ When GFR <45 ml/dL insulin clearance is decrease
- >GRF > 45 mL/min → no dose adjustment
- ►GFR 10 mL/min to 45 mL/min → 25% reduction
- ►GFR < 10 mL/min → 50% reduction

Insulin in patients on hemodialysis

- ➤ Long-acting Insulin 0.1 u/kg
- ➤ Insulin resistance diminishes after the start od dialysis
- Half-life of insulin is prolonged
- > The potential for hypoglycemia with both oral and insulin increases in the presence of CKD
- Self-monitoring of blood glucose concentration is imperative.
- ➤ Insulin requirement often decreases by ~30%
- Glargine has been shown to reduce hypoglycemia in hemodialysis patients (0.1 units /kg to start)
- > CGM

CGM in Diabetes CKD

- ➤CKD-4
- CKD-5
- > Patients in dialysis
- When clinical course is not concordance with A1c results

