

Overview

- Overview of cardiovascular and renal effects of diabetes mellitus.
- Physiology of SGLT-1 and SGLT-2.
- Compare available SGLT-2 inhibitors and their differences on receptor affinity.
- Summarize and compare the four SGLT-2 inhibitors clinical trials.
- Explore the potential determinants for their cardiovascular, renal and safety outcomes.
- Class effect?

Cardiorenal effects of Diabetes Mellitus

- ♦ At least 68 percent of people age 65 or older with diabetes die from some form of heart disease; and 16% die of stroke.
- ♦ Adults with diabetes are two to four times more likely to die from heart disease than adults without diabetes.
- ♦ The American Heart Association considers diabetes to be one of the seven major controllable risk factors for cardiovascular disease.
- ♦ Patients with diabetes mellitus have >2× the risk for developing heart failure. Approximately 44% of hospitalized patients for HF have DM.
- ♦ It is also well known that diabetes is linked to kidney failure; about 30% of those with type 1 diabetes and 10% to 40% with type 2 diabetes (T2D) will progress to this stage.

Sodium Glucose Transporters

Characteristic	SGLT1	SGLT2
Location	Small Intestine, Later portion of PTC (segment 3)	Early PTC (segment 1 and 2)
Capacity	Low	High
Affinity	High	Low
Contribution to glucose reabsorption	10%	90%
Disease if mutation occurs	Glucose-Galactose Malabsorption	Familial Renal Glucosuria
Manifestations of disease	Diarrhea at few days of age	None
Course	Fatal if not controlled by low CHO diet	Benign
Inhibitors	Phlorizin	Current Available SGLT2 i

Proximal Convoluted Tubule

♦ Empagliflozin

(EMPA REG Trial)

♦ Canagliflozin

(CANVAS and CREDENCE)

♦ Dapagliflozin

(DECLARE-TIMI 58)

♦ Ertugliflozin

(VERTIS, VERTIS CV)

Selectivity for SGLT2 versus SGLT1

Figure 1

Selectivity of different compounds of the class for the sodium-glucose co-transporter-2 (SGLT2) vs. SGLT1.

A1C effect of Available SGLT2 Inhibitors

Drug	Hgb A1C Reduction %
Canagliflozin	-0.73 to -1.08
Dapagliflozin	-0.52 to -0.59
Empagliflozin	-0.62 to -0.66
Ertugliflozin	-0.7 to -1.7

Body Weight

Blood Pressure

- ❖ Believed to result from an increase in urinary glucose excretion.
- ❖ Associated with daily glucose losses of 60–80 g or 240–320 calories.
- ❖ Body weight reductions observed after 12–24 weeks of therapy are typically in the 2- to 3-kg range.
- ❖ Although fluid loss may initially play a role in weight loss, overall reductions in body weight are believed to be mainly the result of <u>fat loss</u>.

- ♦ Diuretic effects of SGLT-2is through increased urinary excretion of glucose and sodium.
- ♦ This also leads to sustained reductions in intravascular volume, which likely contribute to the antihypertensive effects of SGLT-2i.

Renal Effect

SGLT2 Inhibitors Clinical Trials

EMPA REG Trial	<u>CANVAS</u>			
• First CVOTs, with 7020 patients with T2DM <u>and</u> established CVD. 10 or 25 mg Empagliflozin or placebo. Mean age: 63.1, female: 28%	• Second CVOTs with 10,142 patients with T2DM daily Cana 100 mg with optional increase to300 mg or placebo. Mean age: 63 years, 36% female.			
• 3.1 years follow up period. History of myocardial infarction: 47%, multivessel disease: 47%, coronary artery bypass grafting: 25%	• 2.4 years period. Patients must be > 30 years with established CVD or > 50 years with at least 2 risk factors. (65.6% had CVD).			
• eGFR > 30 ml/min (MDRD), mean eGFR was 74 +- 21: (74% pts had eGFR > 60 ml/min).	 eGFR> 30 ml/min (MDRD). Mean eGFR: 76.5 +- 20. 20% had eGFR < 60, 79.9% had eFGR > 60 ml/min 			
4171 patient had microalbuminuria, 769 had macroalbuminuria.	 69.8% had microalbuminuria 22.6% had UACR 30-300 and 7.6% had macroalbuminuria 			
• 5666 patients used ACEi/ARBs (80%)	8116 patients used ACEi/ARBs 8			

DECLARE-TIMI 58	CREDENCE
 Third CVOTs, with 17,160 patients with T2DM at 10 mg Dapagliflozin or placebo. Established CVD or > 1 risk factors including men ≥55 years or women ≥60 years. 	 4401 patients with T2DM and CKD. 100 Canagliflozin or placebo 50.4% had established CVD, but it was not required for inclusion criteria. 16% had baseline hx of HF Required to have albuminuria
 Duration follow up: 4.2 years. Female 37% 40% had established CVD 	 Duration of follow-up: 2.62 years Mean patient age: 63.0 years Percentage female: 33.9%
 Mean eGFR: 85.2 ml/min (CKD-EPI) 92% of patients had eGFR > 60 ml/min 	 Mean eGFR: 56.2 +-18 (CKD-EPI) 59% eGFR <60 ml/min Mean UACR: 927 mg/g (only 31 patients had UACR <30)
 67.9% had UACR < 30mg/g 23 % had UACR 30-300 mg/g 6.8% had UACR > 300 mg/g 	 11.3% had UACR > 30-300 mg/g 76.6% had UCAR 300-3000 mg/g 11.4% had UCAR > 3000 mg/g
• 81.3% used ACEi/ARBs	• 99.9% used ACEi/ARBs (it was required)

CANVAS Trial

Outcome	Canagliflozin (N=5795) of participants p	Placebo (N=4347) er 1000 patien	Hazard Ratio (95 9	% CI)
Death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke	26.9	31.5	├	0.86 (0.75–0.97)
Death from cardiovascular causes	11.6	12.8	⊢	0.87 (0.72-1.06)
Nonfatal myocardial infarction	9.7	11.6	├ ── ` ;	0.85 (0.69-1.05)
Nonfatal stroke	7.1	8.4	├	0.90 (0.71-1.15)
Fatal or nonfatal myocardial infarction	11.2	12.6	⊢	0.89 (0.73-1.09)
Fatal or nonfatal stroke	7.9	9.6	 • ; 	0.87 (0.69-1.09)
Hospitalization for any cause	118.7	131.1	H ● H	0.94 (0.88-1.00)
Hospitalization for heart failure	5.5	8.7	⊢	0.67 (0.52-0.87)
Death from cardiovascular causes or hospitalization for heart failure	16.3	20.8	⊢●	0.78 (0.67–0.91)
Death from any cause	17.3	19.5	⊢	0.87 (0.74-1.01)
Progression of albuminuria	89.4	128.7	H●H	0.73 (0.67-0.79)
40% reduction in eGFR, renal-replaceme therapy, or renal death	ent 5.5	9.0 ⊢	0.5 1.0	0.60 (0.47–0.77)
			Canagliflozin Better Placebo Bette	→

DECLARE-TIMI 58

CREDENCE Trial

Comparing Clinical Trials

Fig. 1 Baseline estimated glomerular filtration rates (eGFRs) and prior cardiovascular disease (CVD) rates in the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE-TIMI 58), CANagliflozin CardioVascular Assessment Study (CANVAS) Program, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose (EMPA–REG OUTCOME), and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trials. Prior CVD displayed as incidence (percentage)

DECLARE-TIMI 58

Baseline renal status: eGFR=85.2; UACR = 13.1 [6.0, 43.6]; n=17,160.

Composite renal outcome: ≥40% reduction in eGFR to <60, ESRD (dialysis ≥90 days, transplant or sustained eGFR<15), or renal/CV death

CANVAS

Baseline renal status: eGFR=76.5±20.5; UACR = 12.3 [6.65, 42.1]; n=10,142.

Composite renal outcome: ≥40% reduction in eGFR, RRT (transplant, chronic dialysis, or sustained eGFR<15), or renal death

EMPA-REG OUTCOME

Baseline renal status: eGFR=74±21; 59.4% UACR<30, 28.6% UACR >30-300, 11.0% UACR >300; n=7020. Composite renal outcome: Doubling of serum Cr with eGFR ≤45, RRT, or renal death

CREDENCE

Baseline renal status: eGFR=56.2±18.2; UACR = 927 [463, 1833]; n=4401.

Composite renal outcome: Doubling of serum Cr, ESRD (eGFR <15, dialysis, or renal transplant), renal/CV death

Table 1 Renal drug guidelines, entry criteria, mean estimated glomerular filtration rate, and composite outcome definitions in the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE-TIMI 58), CANagliflozin CardioVascular Assessment Study (CANVAS) Program, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose (EMPA–REG OUTCOME), and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trials

Trial	FDA indicated guidelines	Study renal entry criteria			Results		
	Minimum recommended eGFR	eGFR minimum	eGFR equation			Composite renal outcome	
DECLARE-TIMI 58	45	N/A	CKD-EPI	CrCl 60 mL/min (Cock- roft-Gault equation)	85.2	≥ 40% reduction in eGFR to < 60, ESRD (dialysis ≥ 90 days, transplant or sustained eGFR < 15), or renal/CV death	
CANVAS	45	30	MDRD	N/A	76.5	≥ 40% reduction in eGFR, RRT (transplant, chronic dialysis, or sustained eGFR < 15), or renal death	
EMPA-REG OUT- COME	45	30	MDRD	N/A	74	Doubling of serum Cr with eGFR ≤ 45, RRT, or renal death	
CREDENCE	45	30	CKD-EPI	UACR 300-5000	56.2	Doubling of serum Cr, ESRD (eGFR < 15, dialysis, or renal transplant), renal/CV death	

All eGFRs are in mL/min/1.73 m²

eGFR estimated glomerular filtration rate, MDRD modification of diet in renal disease, CKD-EPI chronic kidney disease epidemiology collaboration, RRT renal-replacement therapy, ESRD end-stage renal disease, CV cardiovascular, CrCI creatinine clearance, Cr creatinine, UACR urinary albumin-creatinine ratio in mg/g

Fig. 4 Heart failure hospitalization (HHF), HHF and cardiovascular (CV) death, and major adverse cardiovascular event (MACE) relative risk reductions (RRRs) in the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE-TIMI 58), CANagliflozin CardioVascular Assessment Study (CANVAS) Program, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose (EMPA–REG OUTCOME), and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trials. Statistical outcomes displayed as RRR, p-value. RRRs were calculated from hazard ratios

- * When considering the four SGLT2i trials, overall relative risk reductions for HHF and CV death were externally consistent among them.
- ♦ The relative reductions in HHF were considerably greater than those for ischemic events including nonfatal MI and ischemic stroke.
- ♦ The absolute risks of CV events appeared to be more related to baseline renal filtration than the baseline CVD rate.
- ♦ Together, these trials establish the UACR as a risk predictor not only for renal events but also CV outcomes.

- * The composite renal outcome RRR is another intriguing result when comparing the four trials.
- > In a reversal of the trend seen with the other outcomes, CREDENCE had the smallest RRR and DECLARE-TIMI 58 the largest.

* Interestingly, the CREDENCE and EMPA-REG OUT-COME had similar MACE incidence rates (48.7 and 43.9/1000 patient-years, respectively), despite different baseline UACR and eGFR.

Safety

- ❖ The four trials demonstrated several general safety trends.
- ❖ They were generally associated with increased risk of diabetic ketoacidosis, dehydration, orthostatic hypotension, and amputation and decreased risk of acute kidney injury.
- ❖ Increased risk of genital infections; however, this is expected due to the glucosuria.
- ❖ Fournier's gangrene.

Table 3 Risk associated with study drug compared to placebo for adverse events in the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE-TIMI 58), CANagliflozin CardioVascular Assessment Study (CANVAS) Program, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients-Removing Excess Glucose (EMPA-REG OUTCOME), and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trials

	DECLARE- TIMI 58	CANVAS	EMPA-REG OUTCOME	CREDENCE
Male genital infection ^a	+ ^b	+ ^b	+ ^b	+ ^b
Female genital infection ^a		+ ^b	$+_{p}$	+
Any AE	N/A	N/A	_ь	_ь
Serious AE	_ь	_ь	_ь	_ь
AE causing discon- tinuation	+ ^b	+	_ь	N/A
Hypoglycemia	_ь	+	_	_
UTI	_	+	_	+
Fracture	+	$+_{p}$	_	_
Hyperkalemia	N/A	+	N/A	_
Amputation	+	+ ^b	N/A	+
AKI	_ь	_	_ь	_
Breast cancer	0	+	N/A	+
Bladder cancer	_ь	_	N/A	+
DKA	+ ^b	+	+	+ ^b

AE adverse event, N/A not available, UTI urinary tract infection, AKI acute kidney injury, DKA diabetic ketoacidosis

^a DECLARE-TIMI 58 did not differentiate genital infection by sex

^b indicates statistical significance at the $\alpha = 0.05$ level. "+"= increased risk,

[&]quot;-"= decreased risk, "0"= no difference in risk

- **♦** What does class effect mean?
- ♦ Should be based on three concepts: a similar chemical structure, a similar mechanism of action and similar pharmacological effects, and adverse reactions.
- ♦ The trials are externally consistent with each other, showing reliable cardiorenal benefit (according to baseline risk) and comparable adverse effects.
- ♦ The SGLT2i studied have similar known mechanisms of action resulting in losses of glucose and sodium in the urine and reductions in blood pressure and body weight.

Fig. 3 Summary of cardiovascular and renal outcomes with SGLT-2is as determined by a meta-analysis of the EMPA-REG OUTCOME, CANVAS, and DECLARE-TIMI 58 studies [30]. *ASCVD* atherosclerotic cardiovascular disease,

CI confidence interval, CV cardiovascular, ESRD end-stage renal disease, HF heart failure, SGLT-2i sodium-glucose cotransporter-2 inhibitor

Future Potential Benefits

- ♦ SGLT2i have demonstrated a host of positive effects of interest for future research.
- ♦ In animal models of T2DM female mice, empagliflozin ameliorated kidney injury by promoting glycosuria, and possibly by reducing systemic and renal artery stiffness.
- ♦ Canagliflozin attenuated the progression of atherosclerosis, reducing hyperlipidemia, hyperglycemia, and inflammation by lowering the expression of some inflammatory molecules.
- Class of medication to treat patients beyond diabetes...

Take Home Message

- ◆ Dapagliflozin, empagliflozin, and canagliflozin have internally and externally consistent class effects on cardiorenal outcomes and similar safety profiles.
- ♦ Baseline renal filtration function and degree of albuminuria are the most significant indicators of risk for both CV and renal events.
- Thus, these two factors also anticipate the greatest clinical benefit for SGLT2i.

Favorable effects

Reduction of pre-load (diuretic effects)

Reduction of afterload (blood pressure, arterial stiffness)

Improvement of mitochondrial efficiency

Delay of decline in eGFR

Delay of micro- and macroalbuminuria

Weight loss

Reduction in epicardial adipose tissue

Improvement in glycemia

Reduction in uric acid

Unfavorable effects

Amputations (in particular toe, metatarsal)

Volume depletion/Hypotension

Diabetic ketoacidosis

Fractures

Urinary and genital infections

	VERTIS-CV	EMPA-REG	CANVAS	DECLARE	
1	(N = 8,237) Ertugliflozin	(N = 7,034) Empagliflozin	(N = 10,142) Canagliflozin	(N = 17,160) Dapagliflozin	
Age (years)	64.4 ± 8.1	63.1 ± 8.6	63.3 ± 8.3	63.8 ± 6.8	
Men, n (%)	5,763 (70.0)	5,026 (72)	6,509 (64.2)	10,738 (62.6)	
Race					
White	7,231 (87.8)	5,089 (72)	7,944 (78.3)	79.6%	
Black	235 (2.9)	357 (5)	336 (3.3)	3.5%	
Asian	497 (6.0)	1,518 (22)	1,284 (12.7)	13.4%	
Other	274 (3.3)	70 (1)	578 (5.7)	3.5%	
Diabetes duration (years)	12.9 ± 8.3	NA	13.5 ± 7.8	NA	
A1C (%)	8.3 ± 0.9^{a}	8.1 ± 0.8	8.2 ± 0.9	8.3 ± 1.2	
BMI (kg/m ²)	32.0 ± 5.4	30.6 ± 5.3	32.0 ± 5.9	32.1 ± 6.0	
eGFR (mL/min/1.73 m ²)	76.0 ± 20.9	74 ± 21	76.5 ± 20.5	86.1 ± 21.8	
≥90	2,044 (24.8)	1,534 (22)	2,474 (24.4)	6,855 (39.9)	
60 to <90	4,385 (53.2)	3,671 (52)	5,620 (55.5)	8739 (50.9)	
30 to <60	1,776 (21.6)	1,796 (26)	2,010 (19.8)	$1566 (9.1)^{e}$	
Established CV Disease (%)	99	99	65.6	40.6	
Myocardial Infarction	3,940 (47.8)	3,275 (47)		3,580 (20.9)	
Coronary Revascularization	CIET OF MARKET		_		
CABG	1,808 (21.9)	1,738 (25)	5721 (56.4)°	1,678 (9.8)	
PCI	3,402 (41.3)	NA	- 2 M.	3,655 (21.3)	
Stroke	1,723 (20.9)	1,631 (23)	1,958 (19.3) ^d	1,107 (6.5) ^f	
Peripheral arterial disease	1,546 (18.8)	1449 (21)	2,113 (20.8)	1,025 (6.0)	
History of Heart Failure	1,777 (21.6)	706 (10.1) ^b	1,461 (14.4)	1,698 (9.9)	

Data are n (%) or mean ± SD, unless otherwise shown. NA = data not available. ^aA1C data from screening visit; ^b Percentage based 7,020 patients; ^c Coronary atherosclerotic disease; ^d Cerebrovascular disease; ^e <60 mL/min/1.73m²; ^f Ischemic stroke. A1C = glycosylated hemoglobin. BMI = body-mass index. CABG = coronary artery bypass graft. eGFR = estimated glomerular filtration rate by MDRD. PCI = Percutaneous Coronary Intervention.

References

- Sunder Mudaliar,1,2 David Polidori,3 Brian Zambrowicz,4 and Robert R.Henry. Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport. Diabetes Care 2015;38:2344– 2353 | DOI: 10.2337/dc15-0642.
- Amar Ali . Steve Bain, et al. SGLT2 Inhibitors: Cardiovascular Benefits Beyond HbA1c—Translating Evidence into Practice. Diabetes Ther (2019) 10:1595–1622.
- Sunder Mudaliar,1,2 David Polidori,3 Brian Zambrowicz,4 and Robert R.Henry. Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport. Diabetes Care 2015;38:2344–2353 | DOI: 10.2337/dc15-0642.
- 4. Giuseppe Derosa, et al. Ertugliflozin: a sodium-glucose cotransporter-2 (SGLT-2) inhibitor for glycemic control in type 2 diabetes. Ther Clin Risk Manag. 2018; 14: 1637–164
- Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renaloutcomes in type 2 diabetes: a systematic reviewand meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9.
- 6. Dhiren K. Patel.Jodi Strong. The Pleiotropic Effects of Sodium–GlucoseCotransporter-2 Inhibitors: Beyond the GlycemicBenefit. Diabetes Ther (2019) 10:1771–1792.
- 7. Subodh Verma1&John J. V. McMurray. SGLT2 inhibitors and mechanisms of cardiovascular benefit:a state-of-the-art review. Diabetologia(2018) 61:2108–2117.
- 8. Aaron Y. Kluger, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Kluger et al. Cardiovasc Diabetol (2019) 18:99.

Thank You