

Thyroid Eye Disease

Julio A. Rodríguez Padilla, MD Neuro-Ophthalmology, Orbital and Oculoplastic Surgery UPR School of Medicine Dept of Ophthalmology Centro Oftalmologico Metropolitano

Objectives

- To review the pathophysiology behind Thyroid Eye Disease
- To review current medical and surgical management of Thyroid Eye Disease

Financial Disclosures

No conflicts of interest to disclose

Pre-Test

- The primary target within the orbit of cross reacting T-lymphocytes that lead to Grave's Ophthalmopathy is:
 - o Optic nerve glial cells
 - Orbital fibroblasts
 - Conjunctival goblet cells
 - Corneal endothelial cells
- In surgical management of Grave's related strabismus, the ideal management is
 - Single eye surgery
 - Muscle resection type surgery
 - Muscle recessions, preferably with adjustable sutures
 - Avoidance of adjustable surgery

- The most common specific inflammatory condition of the orbit
- Most common cause of unilateral and bilateral proptosis

- Most common in women (6:1)
- Bimodal presentation 40-44 and 60-64
- Median age 43
- Genetic factors 20-60% of patients have a positive family history.
- Smokers 7 times more likely to develop TED
- May precede, coincide or follow systemic manifestations of thyroid disease.

- 90% Graves' hyperthyroidism
- 1% primary hypothyroidism
- 3% Hashimoto thyroiditis
- 6% euthyroid

- Patients w/o history of abnormal thyroid function or regulation at diagnosis of TED risk of developing thyroid disease:
 - o 25% within 1 year
 - o 50% within 5 years.
- 30% of patients with autoimmune hyperthyroidism have or will develop TED

- Usually a self limited disease
 - o 6 months to 5 years
- Manifestations:
 - Congestion/Inflammation 90%
 - Eyelid retraction 90%
 - o Proptosis 60%
 - Myopathy 40%
 - o Compressive ON 5%
 - Corneal damage <1%
 - o All findings, 5%

- Orbital changes caused by various processes
 - o Inflammation & edema
 - o Fibrosis
 - Fat proliferation

- Autoimmune reaction
- Cell and antibody-mediated reaction against TSH receptors
- Cloning of the TSH receptor allowed assessment of TSH-R in extrathyroidal tissues,
 - low abundance of TSH-R in cultured orbital fibroblasts and in normal orbitaladipose tissues.
 - elevated TSH-R in orbital tissues in TED patients, highest in those w/ active disease
- Elevated levels of anti–TSH-R antibodies in TED patients
- This and association b/w TED and Graves' hyperthyroidism support TSH-R as primary autoantigen in TED

- T-cells react against thyroid follicular cells with common antigenic epitopes with orbital tissue
 - o Causes active inflammatory phase
- Orbital fibroblasts are the target of T-cell lymphocytes.
 - CD40-receptor + (also found on B cells)
- T-Cells CD154 →CD40-R→pro-inflammatory cytokine production by orbital fibroblasts
 - o IL 6, IL-8, PGE2
 - Incr. Hyaluronan and GAG synthesis
- T- cells secrete leukoregulin and interferon-y
 - increased synthesis of hyaluronan and PGE2 by orbital fibroblasts
- IL-1 and interferon-y, and IgG from patients with Graves' disease stimulates orbital fibroblasts to express adhesion molecules that promote direct interaction between target cells and inflammatory cells.

- Type I insulin-like growth factor receptor (IGF-IR) is another autoantigen in TED
- TED patient's orbital fibroblasts express higher than normal levels of IGF-IR
- Serum from patients w/ Graves' disease stimulates orbital fibroblasts from patients with TED
 - effect inhibited by monoclonal Ab that blocks IGF-IR
 - Suggests that signaling through IGF-IR mediates the process

- Antigen independent auto-inflammatory response
 - o Cytokines and chemokines directly activate cell mediated response
 - o Monocytes, NK and granulocytes involved

Bahn, RS. Grave's Ophthalmopathy. N Engl J Med 2010;362:726-38.

- Increased orbital fat is evident in TED
- Adipogenesis activated by transcriptional regulators→peroxisome-proliferator-activated receptor γ (PPAR-γ)
- Adipogenic genes for PPAR-γ, IL-6, adiponectin, and leptin may be overexpressed in TED
 - PPAR-y agonists stimulate adipogenesis and expression of TSH receptor in cultured orbital preadipocytes.
- Proptosis has been noted in patients w & w/o TED, after tx of type 2 DM with PPAR-y agonists of the thiazolidinedione type.
 - Thiazolidinedione induced thyroid associated orbitopathy
 Lee, S, Tsirbas, A. Goldberg, R, et al. BMC Ophthalmol 2007; 7:

- Naturally occurring PPAR-y ligands may stimulate adipogenesis in TED patients
 - COX-2 upregulated in the orbit of TED patients->
 - T cells produce prostaglandins and induce adipogenesis (PPAR-γ ligand)
- TSH can stimulate adipogenesis in mouse embryonic stem cells
 - o Activation of TSH-R may initiates new fat-cell development.
- Orbital fibroblasts transfected with a TSH-R activating construct
 - o early adipocyte differentiation occurred
 - hyaluronan production was stimulated
 - Suggests that TSH-R binding by anti– TSH-R ab in the orbit contribute to development of TED

- Cell-surface marker Thy-1 (CD90) is overexpressed in orbital tissues in TED
 - Thy-1 + fibroblasts are capable of producing of PGE2, IL-8, hyaluronan
 - $_{\odot}$ Thy-1 + fibroblasts differentiate into myofibroblasts that can mediate inflammation, repair, and fibrosis when stimulated by TGF- β
 - Fibroblasts w/in EOMs are almost exclusively Thy-1+
 - About ½ fibroblasts in adipose tissue are Thy-1 neg and are capable of differentiation into mature fat cells.
 - Proportions of Thy-1+ to Thy-1- fibroblasts and their exposure to TGF-β could explain why some fat proliferation vs fibrosis predominates in some patients

M.D.A

- 1st seen 10/01/2015
- Dx w hyperthyroidsm 1 year prior, s/p RIA
- On tx. w Synthroid
- Hx of R.A., on plaquenil
- 1 year ago bilateral redness, tx w lubricants primary OPH
- Progressive changes over 1 year

M.D.A

- VA 20/25 OU, normal IOP
- Exophthalmos w 24mm OD, 23 mm OS
- MRD1 7mm OU, (normal 4-5mm)
- Limited superior ductions, limited abduction OD, Left hypertropia worst in rt gaze sugg of RIR enlargement
- Conjunctival chemosis
- No marcus gunn pupil, normal fundus exam

TED Diagnosis

- 2 of the following 3 signs present:
 - Concurrent or recently treated immune-related thyroid dysfunction (1 or more of the following):
 - Graves hyperthyroidism
 - Hashimoto thyroiditis
 - Presence of circulating thyroid antibodies
 - o TSH-receptor (TSH-R) antibodies,
 - o thyroid-binding inhibitory immunoglobulins (TBII),
 - o thyroid-stimulating immunoglobulins (TSI),
 - o antimicrosomal antibody
 - Typical orbital signs (1 or more of the following):
 - Unilateral or bilateral eyelid retraction with (w or w/o lagophthalmos)
 - Unilateral or bilateral proptosis (compared to old photos)
 - Restrictive strabismus in a typical pattern
 - Compressive optic neuropathy
 - Fluctuating eyelid edema/erythema
 - Chemosis/caruncular edema
 - Radiographic evidence of TED—unilateral/bilateral fusiform enlargement of 1 or more of the following:
 - Inferior rectus muscle
 - Medial rectus muscle
 - Superior rectus/levator complex
 - Lateral rectus muscle

M.D.A.

- Assesment: TED w strabismus, eyelid retraction and proptosis
- Active inflammatory stage
- Tx alternatives discussed
 - o Indomethacin, FML, Iubrication
 - Orbit CT scan
 - Visual field testing

Classification

- Several scales available
 - Clinical activity score (CAS)
 - o NOSPECS
 - o EUGOGO
 - VISA
- Useful for studies, general guide
- Difficult to use in clinic

CAS

- 10 item list—1 point for presence of ea. item
 - o Pain
 - Spontaneous orbital pain in the last 4 weeks
 - Gaze evoked orbital pain in the last 4 weeks
 - o Redness
 - Eyelid erythema
 - Conjunctival injection considered to be due to active TED
 - Swelling
 - Eyelid swelling that is considered to be due to active TED
 - Chemosis
 - Inflammation of caruncle or plica semilunaris
 - Increase of ≥ 2 mm in proptosis over 1-3 months
 - Impaired function
 - Decrease in monoocular motility in any one direction of ≥ 8 degrees over 1-3 months
 - Decrease in visual acuity equivalent to 1 Snellen line over 1-3 months
- TED considered "active" if:
 - o CAS≥3
- Helps predict benefit of immunosuppressive therapy

NOSPECS

- Disease Severity Scale
- Based on presenting features:
 - o Class 0: No signs or symptoms
 - Class 1: Only signs (upper lid retraction and stare, +/- lid lag)
 - o Class 2: Soft tissue involvement (edema of conjunctiva and lids, conjunctival injection)
 - o Class 3: Proptosis
 - Class 4: Extraocular muscle involvement (usually with diplopia)
 - Class 5: Corneal involvement (primarily lagophthalmos)
 - Class 6: Sight loss (due to optic nerve involvement)

EUGOGO

- Disease Severity Scale
- TED severity can be classified by the following measurements:
 - o Presence of an RAPD
 - Record lid retraction
 - MRD 1 (note superior scleral show)
 - MRD 2 (note inferior scleral show)
 - Presence of temporal flare is present
 - Hertel exophthalmometer with intercanthal distance
 - Risk of cornea ulceration
 - Lagophthalmos
 - Bell's Phenomenon

EUGOGO

- Alternative classification scheme
- grades TED as:
 - o Mild
 - Mild impact on daily life
 - Insufficient to justify immunosuppressive/surgical treatment
 - One or more of the following :
 - Minor lid retraction (< 2 mm)
 - Mild soft tissue involvement
 - Exophthalmos < 3 mm above normal for race and gender (~18 mm for Asians, 20 mm for Caucasians, and 22 mm for African Americans)
 - o Transient or no diplopia
 - Corneal exposure responsive to lubricants

EUGOGO

Moderate-to-severe

- o Non-sight-threatening but sufficient impact on life to justify immunosuppression or surgical intervention
- o One or more of the following:
 - Lid retraction ≥ 2 mm
 - Moderate or severe soft tissue involvement
 - Exophthalmos ≥ 3mm above normal for race and gender
 - Transient or constant diplopia

Sight-threatening

- TED patients with resultant optic neuropathy
- o corneal breakdown
- Warrants immediate intervention

TABLE 5. European Group on Graves'orbitopathy (EUGOGO)³⁶ recommends the following classification of patients with GO

Sight-threatening GO

Patients with dysthyroid optic neuropathy (DON) and/
or corneal breakdown. This category warrants immediate intervention.

These patients usually have any one or more of the following: lid retraction >2 mm, moderate or severe soft tissue involvement, exophthalmos >3 mm above normal for race and gender, inconstant, or constant diplopia.

These patients usually have only one or more of the following: minor lid retraction (<2 mm), mild soft tissue involvement, exophthalmos <3 mm above normal for race and gender, transient or no diplopia, and corneal exposure responsive to lubricants.

VISA

Vision, Inflammation, Strabismus, Appearance

VISION, Inflammation, Strabismus, Appearance

Patient Label:

Patient Label

VISA FOLLOW-UP FORM			Patient Label:	
Date: Visit #:				
ORBITOPATHY Symptoms:	THYROID Symptoms:		Date of birth: Gender:	Age:
Progress:	Status:			GENERAL Smoking: Meds:
Therapy:	Therapy:			QOL: 8 ®
SUBJECTIVE	OBJECTIVE	OD	os	
Vision				Refractions
Vision: n / abn	Central vision: sc / cc / ph	20/	20/	Wearing+X
	with manifest	20/	20/	Manifest + X X
Color vis: n / abn	Color vision plates (HRR) / 14 Pupils (afferent defect)	y/n	y/n	Sha will
Progress: s/b/w	Optic nerve: Edema Pallor Macular/ lens pathology	y/n y/n y/n	y/n y/n y/n	
NFLAMM*/ CONGESTION	maculair letto patriology	y / 11	y/11	Inflammatory Index (worst eye/eyelid)
Retrobulbar ache At rest (0-1) With gaze (0-1) Lid swelling: y / n Diumal variation: (0-1) Progress: s / b / w	Caruncular edema			Caruncular edema (0-1): Chemosis (0-2): Conj redness (0-1): Lid redness (0-1): Lid redness (0-2): Retrobulbar ache (0-2): Pulmal Variation (0-1): Total: (10):
STRABISMUS/ MOTILITY				Prism Measure:
Diplopia: None (0) With gaze (1)	Ductions (degrees):	+	+	1
Intermittent (2) Constant (3) Head turn/ tilt: y / n	Restriction > 45° 30-45° 15-30°	0 1 2	0 1 2	ļ
Progress: s/b/w	< 15°	3	3	Est assistance and evalid analysis
Appearance/exposure Lid stare y / n	Upper lid position: MRD Scleral show (upper) (lower)	mm mm	mm mm	Fat prolapse and eyelid position:
Light sensitivity y / n Bulging eyes y / n Tearing y / n Ocular irritation y / n	Levator function Lagophthalmos Exophthalmometry (Base: mm) Corneal erosions Corneal ulcers IOP -straight	mm mm y / n y / n	mm mm y/n y/n mmHg	°⊙≥) (≈⊙≥
Progress: s/b/w	-up	mmHg	mmHg	
DISEASE GRADE		Grade	Progress / F	
V (optic neuropathy) I (inflammation/conges S (diplopia)	y / n ition) 0-10 0-3	/1 /10 /3	s/b/ s/b/ s/b/	/ w Active

M.D.A.

- F/U 1 month later
- + marcus gunn pupil noted
- CT scan showed R-IR and R-MR enlargement, tight orbital apex
- Add to prior assessment compressive optic neuropathy

Management

Goals:

- o Preserve vision
- Avoid keratopathy
- Correct diplopia
- Improve lid function and appearance

TED

- o Self limited, lasts 1-3 years
- Acute phase more responsive to medical tx
- Chronic, quiescent phase usually surgical tx
- Early tx important in decreasing disease severity

Mild to moderate TED (~75%) supportive symptom management:

- Ocular lubrication
- o Topical cyclosporine
- Lifestyle modifications:
 - Smoking cessation
 - Sodium restriction to reduce water retention and tissue edema
 - Sleeping with the head of the bed elevated to decrease orbital edema
 - Sunglasses to decrease photophobia and feelings of dryness
- Oral NSAIDs for periocular pain
- Diplopia management:
 - Prisms
 - Strabismus surgery when stable
- o Selenium, was shown to benefit European patients with mild, non-inflammatory orbitopathy

Table 4-4 Management of Thyroid Eye Disease

Mild disease

Observation

Patient education/lifestyle changes

Smoking cessation

Salt restriction

Elevation of head of bed

Wearing sunglasses

Ocular surface lubrication

Moderate disease

Topical cyclosporine

Eyelid taping at night

Moisture goggles/chambers

Prism glasses or selective ocular patching

Moderate-dose oral steroid therapy

Severe disease

High-dose oral steroid therapy or intravenous steroid therapy

Surgical orbital decompression (followed by strabismus surgery and/or eyelid surgery)

Periocular radiotherapy

Refractory disease

Steroid-sparing immunomodulators (rituximab, others)

- Smoking cessation is a key part of treatment
 - o Increases severity of disease
 - Decreases the effectiveness of treatment methods
 - Cyanide, (in cigarette smoke) converted in the body to thiocyanate, an anti-thyroid agent
 - inhibits iodine uptake
 - increases iodine excretion
 - inhibits thyroid hormone synthesis
- Smokers 2X as likely to develop Graves' disease when compared to nonsmokers.
- Patients with Graves' disease who smoke 7.7 X more likely to develop TED than nonsmokers.
- Smoking reduces the effectiveness of TED treatments such as corticosteroids and RAI.
 - o "Impact on smoking on the response to treatment of Thyroid Associated Ophthalmopathy". Eckstein, A. Br J Ophthalmol 2003; 87:773-776

- Surgical management
- Approximately 20% of patients will undergo some type of surgery:
 - o 13% eyelid surgery
 - o 9% strabismus surgery
 - o 7% orbital decompression
- Surgery is not advised until euthyroid
- TED should be stable for at least 6-9 months.
 - Unless compressive optic neuropathy or corneal exposure present
- In order to prevent repeat surgery following recovery from subsequent procedures, surgery for TED occurs in the following order, whenever possible
 - Orbital decompression
 - Strabismus surgery
 - Eyelid surgery

"The four Stages of Surgical Rehabilitation of the

Patient with Dysthyroid Ophthalmopathy". Schoor, N.,

Seiff, S. Ophthalmol 93:476-483, 1986

- Orbital decompression
- Extraocular muscle surgery
- Eyelid margin repositioning
- Blepharoplasty

Compressive Optic Neuropathy

- 6% TED patients affected
- Optic nerve compressed by EOM bellies at orbital apex
 - o Inflammation and congestion at the orbital apex compresses the optic nerve and its blood supply
 - Expansion and congestion of orbital tissues can lead to optic nerve stretching
- May be present without significant proptosis
- Loss of vision
 - Visual field affected
 - Impaired pupillary responses (Marcus-Gunn sign)
 - Decreased color vision
 - Optic nerve edema may be present

Compressive Optic Neuropathy

- Management:
 - Steroids: First line of tx
 - Oral 80-100 mg, tapering 10 mg/week x 12 weeks
 - IV route: weekly for 12 weeks
 - o Radiation:
 - concurrent with steroids
 - 2000 cGy divided in 10 sessions
 - Orbital Decompression: definitive tx

M.D.A.

- Started on oral prednisone
- Coordinated w ENT for combined medial/floor decompression
- Decompression OD done 12/01/2015
- Post op strabismus worsened (expected)
- Tapered down prednisone
- Post op exoph: 20 mm OD, 22 OS
- Pt desired no more surgery
 - Referred for poss strabismus sx

Orbital Decompression

- Does not decrease inflammation
- Increases orbital volume to accommodate fluid, edematous tissue
- If proptosis not significant pt should be aware of eventual enophthalmos

Orbit Decompression

- Individualize
- 1, 2, 3, 4 walls
- Fat excision

Medial Wall

- Endoscopic
 - o Better posterior removal, ON compresssion
 - o Cannot reach anteriorly, floor
- Transcaruncular:
 - o Better anterior exposure, may be extended inferiorly for inferior decompression
- Lynch (transcutaneous)
 - o Best exposure, more scarring

Lateral Wall

- Combined with medial wall decompression
- bone can be removed, burred down or advanced
- May reach sphenoid bone, B/W superior and inferior orbital fissure

Inferior wall

- Greatest potential to induce diplopia
- May be combined with medial wall decompression
- Transcutaneous, transconjunctival or transmaxillary approach

Roof Decompression

- Largely discontinued
- Needs neurosurgeon
- Pulsation, CSF leaks

M.D.A

- Returns 1/8/16 c/o pain left eye
- Proptosis OS increased
- Bilateral limitation in abduction
- Assessed still active TED, now w contralateral involvement
- Re-started pred
 - o Discussed radiotx, IV SM boluses, rituximab
- On f/u better, new CT scan ordered
- Orbit OS worse (but no Optic neuropathy).
- Tapered pred, scheduled 2nd eye sx

Exophthalmos

- 2nd most common TED sign (60%)
- Measurable (exophthalmometer)
- Exposure keratopathy
- Perceived deformity

Proptosis

- May be axial, non-axial or asymmetric
- Mild: lubricants, retraction repair
- Severe cases, keratopathy: decompression

M.D.A.

- Underwent 2-wall decompression OS 6/14/16
- Exophthalmometry 19/21
- Significant dysmotility
- Referred for strabismus surgery

Strabismus

- 40% of TED patients
- I'MSLO
- Restrictive forced ductions
- Pain (ache)
- Characteristic imaging findings
 - o Tendon sparing EOM enlargement
- Inflammation of EOM's
 - o Fibrosis
 - o Inelasticty
 - o Restriction

Extraocular Motility

- Management:
 - 1/3 cases respond to high dose prednisone, if in congestive phase
 - Radiation limited benefit
 - Neither useful in chronic cases
 - May try prisms
 - o Strabismus Sx
 - Recessions (avoid resections)
 - Adjustable sutures

Strabismus

- Most TED patients with diplopia due to strabismus can be managed with prism glasses
- Indications for strabismus surgery
 - Diplopia in primary gaze or with reading.
 - Abnormal head positioning
 - o Cosmesis

Strabismus

- Surgery
 - o Delayed until disease stability has been demonstrated.
 - Recession of the affected muscles is recommended
 - Adjustable sutures are preferred
 - o Diplopia is frequently improved post-operatively, but normal ocular motility is infrequently achieved
- Extraocular muscle recession can worsen proptosis
- Extraocular muscle recession can affect eyelid position upper and lower eyelid position
 - Strabismus surgery should come before corrective eyelid procedures.
- Botulinum toxin
 - o Poor surgical candidates that cannot be treated with prisms may benefit.
 - Can be unreliable

MDA

- 1/12/17 f/u post strabismus surgery—pt happy
- Eyelid reconstruction started
 - o 3/7/17 right eyelid retraction repair (with blepharoplasty)
 - 5/16/17 left eyelid retraction repair (with blepharoplasty)
 - 2/6/18 re-op right eyelid (Alloderm graft)

Eyelid Retraction

- Most common sign of TED (90%)
 - ↑ sympathetic tone
 - Contraction (fibrosis) levator palpebrae
 - o Proptosis
 - Lacrimal gland scarring
- Dalrymple's sign
- Lagopthalmos
- Temporal flare

Eyelid Retraction

- Very common
- Sometimes improves with time
- Lid lag
- Lagophthalmos

Eyelid Retraction

Treatment

- o Non-surgical
 - Injection of hyaluronic acid gel fillers
 - Botulinum toxin
- o Surgical
 - Eyelid weights
 - Incision and/or recession of one or more of the eyelid retractors
 - Full-thickness blepharotomy
 - Insertion of spacer material to lengthen the eyelid
- Eyelid contouring

Corneal Exposure

- Risk factors:
 - o Proptosis
 - o eyelid retraction
 - Lagophthalmos
 - neurotrophic cornea
 - o poor Bell's reflex.
- Prolonged corneal exposure ⇒corneal drying, ⇒ decreased vision, risk of ulceration, perforation

Corneal Exposure

- Non-emergent treatment
 - Environmental modifications (e.g. avoid direct wind, sunglasses etc)
 - Tear substitutes
 - Increasing tear production (cyclosporine, loteprednol, flurometholone)
 - Decreasing tear evaporation
 - Increasing oil content of tears
 - o Omega-3 fatty acids
 - Warm compresses
 - Surgically decreasing corneal exposure
 - Lid retraction repair
 - Orbital decompression
 - Lid tarsorrhaphy
 - Decreasing tear outflow (punctal plugs or cautery)

Corneal Exposure

- Emergent treatment:
 - o A bandage contact lens (BCL) or scleral contact lens with topical antibiotic ointment
 - A temporary tarsorrhaphy may be indicated
- Definitive treatment is to eliminate the cause of the exposure:
 - Orbital decompression
 - Eyelid retraction repair

Acute Congestive Phase

- Periorbital edema
- Conjunctival chemosis
 - Decreased venous drainage
 - Increased orbital pressure

Orbital Congestion

- Most irritating to patients
 - o Tearing, FB sensation, light sensitivity
 - o Conjunctival injection, chemosis
- Mild: reassurance, lubrication, NSAIDs
- Moderate: Steroids; ? Oral vs IV
- Severe: Steroids, Radiation, Immunosuppression, Orbital Decompression

Steroids

- Oral: prolonged treatment necessary, usually several months.
 - o 1.0-1.5 mg/kg
 - o Premature taper leads to recurrence
 - o 60% effective
 - Side effects
- |V:
 - o Better tolerated, more effective (~ 70%).
 - o Treatment regime: 12 weeks
 - 6 weeks 500 mg once weekly
 - 6 weeks 250 mg once weekly
 - o IV decreases the need for additional medical therapy.
- Ca++, vitamin D, and a proton pump inhibitor
- Monitor serum electrolytes, blood glucose, liver function tests (LFTs), and blood pressure.
- Doses exceeding 8 g (cumulative) are at risk for hepatic toxicity, electrolyte disturbances, and cardiac arrhythmias

- Works only in the acute congestive phase
- Contraindicated in diabetics (retinopathy)
- 1500-2000 cGy divided over 10d

- Mechanisms of action
 - Decreased lymphocytic response
 - o Limits adipocyte differentiation and fatty hypertrophy
 - More effective in patients < 40 years old who have more orbital fat hypertrophy.
 - o Radiation induces death of tissue-bound monocytes.
 - Radiation decreases the immune response at the orbit
 - o Reduced inflammation of ocular surface and eyelids in ~ 60% of patients
- No effect on proptosis or eyelid retraction.
- Can be used to treat:
 - Compressive optic neuropathy
 - Ocular surface and periorbital tissue inflammation
 - o Orbital congestion
 - Strabismus and ocular motility deficits
- Treatment regimen and effects
 - o 2000 cGy, divided over 10 treatment sessions, during a 2-week time course
 - A maximum effect at 6 months post-treatment
 - o Treatment is associated with a transient exacerbation of periorbital edema, conjunctival injection, and chemosis
 - May need concurrent steroids to decrease inflammation

- Results can be irregular
 - o Effectiveness 20% to 90%
 - o The most convincing evidence for benefit is found in the treatment of restrictive vertical strabismus.
 - o Phase at which it is given
 - Side effects
- A review concluded that combined corticosteroids + ORT better antiinflammatory effect, than treatment with either alone

Contraindications

- Patients with underlying microvascular retinopathy (DM/HTN)
 - increased incidence of radiation retinopathy (1-2%).
- Increased risk of cataracts.
- Theoretical concern for tumorigenesis

Rituximab

- Rituxan is a CD20-directed cytolytic antibody indicated for the treatment of patients with:
 - o Non-Hodgkin's Lymphoma (NHL)/Chronic Lymphocytic Leukemia (CLL)
 - o Rheumatoid Arthritis (RA)
- Targets CD-20 on B-cells ⇒ B-cell depletion in the thyroid gland ⇒ decreased TSI production.
- A study showed TED patients with CAS ≥ 4 that received rituximab (1000 mg, IV, twice over a two week interval) showed an average decrease in CAS that ranged from 2.3 to 4.7, with a median decrease ranging from 2.5 to 4.5.
 - Rituximab for thyroid eye disease. Silkiss RZ, et al. Ophthal Plast Reconstr Surg. 2010 Sep-Oct;26(5):310-4.
- The overall efficacy of rituximab therapy is complicated by the variable presentations and course of TED

Infusion Reactions:

- o Rituxan administration can result in serious, including fatal infusion reactions.
- Deaths within 24 hours of Rituxan infusion have occurred.
- Approximately 80% of fatal infusion reactions occurred in association with the first infusion. Carefully monitor patients during infusions.
- Also risk of Progressive Multifocal Leukoencephalopathy

Teprotumumab

- Human monoclonal antibody (Graves' Disease IgG GD-IgG) against the IGF-1-R
- Ongoing trials for treatment of patients with active, moderate to severe TED.
- IGF-1-R has mitogenic and anti-apoptotic functions.
- GD-IgG interacts directly with IGF-1-R.
- IGF-1-R is upregulated in TED.
- Anti-IGF-1-R therapy may interfere with this abnormal signaling pathway present in TED
- Phase 3 clinical trials

Smith TJ, Kahaly GJ, Ezra DG, et al. Teprotumumab for thyroid-associated ophthalmopathy. New Engl J Med. 2017;376:1748–61.

Proptosis graded response at week 24
High response: a reduction ≥ 3 mm from baseline
Response: a reduction of 2 to < 3 mm from baseline
Low response: a of 1 to < 2 mm from baseline
No response: a reduction in proptosis < 1 mm

	Placebo $(N = 45)$		Teprotumumab $(N = 42)$	
	No. of subjects	%	No. of subjects	%
High response	4	8.90%	23	54.80%
Response	5	11.10%	7	16.70%
Low response	8	17.80%	8	19.00%
No response	22	48.90%	0	0.00%
Missing	6	13.30%	4	9.50%
Total	45	100.00%	42	100.00%

Selenium

- Shown to exert significant benefits in patients with mild, noninflammatory orbitopathy.
- Benefits from selenium supplementation (100 µg twice daily) in Europe where the soil was selenium deficient.
- Unknown if this benefits other populations

Azathioprine

- This is a chemotherapeutic agent that inhibits DNA synthesis.
- Combined Immunosuppression and Radiotherapy in TED (CIRTED) trial
- Patients previously treated with oral prednisolone. No added benefit found from tx w radiotx, Aza, or combination

Methotrexate

- Studies have suggested it may be effective as a steroid sparing agent
- Improved CAS
- Successful prednisone weaning
- Studies not blinded, not controlled, no comparison to prednisone

Mycophenolate Mofetil

- In a randomized study (MMF vs Steroids) the MMF group showed a better response percentage (92.5% vs 70.5 %)
- Greater improvement in diplopia and proptosis
- No disease re-activation

Tocilizumab

- Recombinant humanized monoclonal antibody against IL-6 R
- Used for RA, GCA
- Improved CAS, no relapses after infusion
- Improved proptosis and improved diplopia
- Not compared to steroids

Etanercept

- TNF receptor blocker
 - o RA, JRA, psoriatic arthritis, ank. spondylitis
- Improved CAS
- Recurrence after tx cessation

Infliximab

Case reports of response in steroid and surgery resistant cases

Cyclosporin

- Cyclosporin
 - less efficacious than prednisone for single drug therapy, but additive effect when used together
 - o maximum daily dose 5 mg/kg
 - o modify if creatinine level increase by 30%
 - side effects include hypertension, increase hepatic enzyme levels, renal insufficiency, gum hypertrophy

Somatostatin Analogues

- suppresses insulin like growth factor in extraocular muscles and fat cells
- inhibit fibroblast activity thus reducing the secretion of GAG
- good in patients with mild orbitopathy soft tissue inflammation and symptomatic relief, but not in reducing muscle size.
- "Double Blind, placebo controlled trial of Octreotide long acting repeatable in Thyroid Associated Ophthalmopathy". Dickinson AJ. J Clin Endocrinol Metab 2004 89(12):5910-5

Cytokine Antagonists

- Pentoxifyliline- immunomodulatory effect on cytokine production.
- Inhibit GAG secretion by orbital fibroblasts.

"Beneficial effect of Thyroid Associated Ophthalmopathy:a pilot study". Balazs C. J Clin Endocrinol Metab 1997;82:1999-2002

Antioxidants

- Prospective, non randomized, comparative.
- 11 patients Mild mod severe opththalmopathy., 11 placebo.
- Allopurinol 300mg daily and Nicotinamide 300mg. Daily
- 82% treated with antioxidants improved, 27% in control group.
- Soft tissue inflammation responded more tro treatment.

"Antioxidant agents in the treatment of Graves Ophthalmopathy." Bouzas, E. AJO 2000;129:618-622

"Efficacy and Safety of Immunosuppressive Agents for Thyroid Eye Disease" Diego Strianese, M.D., Ph.D. Ophthal Plast Reconstr Surg, Vol. 34, No. 45, 2018

Recommendations

- Steroids remains 1st line
- o Radiotx, 2nd line, can be combined w steroids
 - May reduce need for Sx or improve outcomes
- MTX/MM can act as a SSA
- Rituximab
 - Steroid resistant patients
 - Response may decrease w longer disease duration
 - Possible risk of inducing compressive optic neuropathy
- o Other biologicals may also have a role in disease suppression

TAO and RAI

- In some studies, RAI has been demonstrated to worsen TED (15-30%)
 - o release of TSH-R antigens, incite enhanced immune response.
 - Hypothyroidism after RAI treatment may exacerbate TED via stimulation of TSH-R.
- Risk factors:
 - Hyperthyroid patients with severe, active TED
 - o elevated T₃ levels
 - Smokers
- Concurrent tx with oral corticosteroids may ameliorate.
 - o may be a reasonable strategy for high-risk patients,
 - may not indicated for the average patient.
- Patients with severe TED (rapidly progressive + congestion, + compressive optic neuropathy) may, as an alternative to RAI, benefit from thyroidectomy,

2018 European Thyroid Association Guideline for the Management of Graves' Hyperthyroidism Eur Thyroid J. 2018 Aug; 7(4): 167–186.

- RAI causes progression or de novo occurrence (15-30%) of TED specially in:
 - o smokers
 - Patients with preexisting and recent-onset TED
 - o late correction of post-RAI hypothyroidism
 - o high TSH-R-Ab levels
- In patients at risk of RAI-induced TED progression, oral low-dose steroid prophylaxis is effective, as shown in clinical trials and meta analyses
- Steroid prophylaxis can be avoided in patients with:
 - o absent or inactive GO if other risk factors for RAI-associated progression of GO are absent
- Thyroidectomy does not seem to impact the natural history of GO
 - Alternative for pts w active TED

2018 European Thyroid Association Guideline for the Management of Graves' Hyperthyroidism Eur Thyroid J. 2018 Aug; 7(4): 167–186.

Degree of severity and activity of GO	ATD	RAI	Tx
Mild and inactive	Yes	Yes ¹	Yes
Mild and active	Yes ²	Yes ³	Yes
Moderate-to- severe and inactive	Yes	Yes ¹	Yes
Moderate-to- severe and active	Yes	No	No
Sight threatening	Yes	No	No

- 1. Steroid Prophylaxis in select cases
- 2. Selenium supplementation x 6 mos
- 3. Steroid prophylaxis 0.3/0.5mg/kg x 3 mos

MM00e.

Conclusions

- TED can be disfiguring
- Many patients are emotionally and psychologically affected due to their changes
- Education, reassurance, empathy are integral components of patient care.
- Traditionally, supportive care has been advocated unless severe complications present
- Earlier medical tx in the active phase may decrease necessity or complexity of surgery
- In the future steroid sparing agents may play a more central role in management

Post Test

- The primary target within the orbit of cross reacting T-lymphocytes that lead to Grave's Ophthalmopathy is:
 - o Optic nerve glial cells
 - Orbital fibroblasts
 - Conjunctival goblet cells
 - Corneal endothelial cells
- In surgical management of Grave's related strabismus, the ideal management is
 - Single eye surgery
 - Muscle resection type surgery
 - Muscle recessions, preferably with adjustable sutures
 - Avoidance of adjustable surgery

References

- Liaboe CA, Clark TJ, Shriver EM, Carter KD. Thyroid Eye Disease: An Introductory Tutorial and Overview of Disease. EyeRounds.org. posted November 18, 2016; Available from: http://www.EyeRounds.org/tutorials/thyroid-eye-disease/
- <u>Bahn RS.</u> Graves' Ophthalmopathy, <u>N Engl J Med. 2010 Feb 25; 362(8): 726–738.</u>
- Bartley, GB; Gorman, CA. Diagnostic Criteria for Graves' Ophthalmopathy. Am Journal Ophthlmology 119:792-795
- Kazim M, Goldberg RA, Smith TJ. Insights into the pathogenesis of thyroid-associated orbitopathy: evolving rationale for therapy. Arch Ophthalmol2002;120(3):380-386.
- Douglas RS, Gupta S. The pathophysiology of thyroid eye disease: implications for immunotherapy. Curr Opin Ophthalmol 2011;22(5):385-390.
- Tsui S, Naik V, Hoa N, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves' disease. J Immunol 2008;181(6):4397-4405.
- Ponto KA, Zang S, Kahaly GJ. The tale of radioiodine and Graves' orbitopathy. Thyroid 2010;20(7):785-793.
- <u>Smith TJ</u>¹, <u>Kahaly GJ</u>¹, <u>Ezra DG</u>¹, et al. Teprotumumab for Thyroid-Associated Ophthalmopathy. <u>N Engl J Med.</u> 2017 May 4;376(18):1748-1761.
- <u>Douglas RS</u>¹. Teprotumumab, an insulin-like growth factor-1 receptor antagonist antibody, in the treatment of active thyroid eye disease: a focus on proptosis. <u>Eye (Lond)</u>. 2019 Feb;33(2):183-190.
- <u>Rajendram R¹</u>, <u>Taylor PN²</u>, <u>Wilson VJ³</u>, et al. Combined immunosuppression and radiotherapy in thyroid eye disease (CIRTED): a multicentre, 2 × 2 factorial, double-blind, randomised controlled trial. <u>Lancet Diabetes Endocrinol.</u> 2018 Apr;6(4):299-309.
- <u>Strianese D</u>1. Efficacy and Safety of Immunosuppressive Agents for Thyroid Eye Disease. <u>Ophthalmic Plast Reconstr Surg.</u> 2018 Jul/Aug;34(4S Suppl 1):S56-S59.
- M P Mourits, L Koornneef, W M Wiersinga, et al. Clinical criteria for the assessment of disease activity in Graves' ophthalmopathy: a novel approach. Br J Ophthalmol. 1989 Aug; 73(8): 639–644.
- Bartalena L, Baldeschi L, Boboridis K, et.al, European Group on Graves Orbitopathy The 2016 European Thyroid
 Association/European Group on Graves' Orbitopathy guidelines for the management of Graves' orbitopathy. Eur Thyroid
 J. 2016;5:9–36.