Interactive Interpretation of Continuous Glucose Monitoring

Myriam Z. Allende Vigo, MD CDE FACP FACE Endocrinologist

Disclosure

- Has multiplicity of interests; no conflicts.
 - Has received honorarium as Speaker &/or Consultant for the following Pharmaceutical Companies: Abbvie & Merck.

OBJECTIVES

- Be familiar with different CGM modalities
- List components of adequate CGM report
- Be able to interpret a CGM report
- Be capable of using CGM data to help management of patients with Diabetes Mellitus.

Glucose Monitoring with SMBG vs. CGM

Continuous Glucose Monitoring gives trend information to help prevent low blood glucoses, complications and decrease variability¹⁻³

- 1. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. N Engl J Med.; 2008;359(14):1464-1476.
- 2. Garg S, et al. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor: a randomized controlled trial. Diabetes Care. 2006;29(1):44-50.
- Garg SK, et al. Continuous home monitoring of glucose: improved glycemic control with real-life use of continuous glucose sensors in adult subjects with type 1 diabetes. Diabetes Care. 2007;30(12):3023-3025.

4 patients with T1D on MDI – all with HbA1c at a central lab of 8.0% 14 days of CGM (AGP) just prior to the HbA1c

New Definitions of Glycemic Control (aka "Beyond A1c")

Time in Range

- % of time in "safe" range (70-180 mg/dL)
- Hypoglycemia ("level 1")
 - % of time < 70 mg/dL
- Hypoglycemia ("level 2")
 - % of time < 54 mg/dL
- Hypoglycemia unawareness
 - Autonomic/neuropathic complication due to extended time spent in hypoglycemia over time
 - Patients no longer have autonomic symptoms of hypoglycemia
 - 20-25% T1D patients hypoglycemia unaware
- Hyperglycemia ("level 1")
 - % time spent > 180 mg/dL
- Hyperglycemia ("level 2")
 - % time spent > 250 mg/dL

2015 Proceedings AACE and ACE Consensus Conference on Glucose Monitoring

- CGM is recommended in all patients with type 1 DM and should be available to all type 2 DM on multiple daily injections, basal insulin or sulfonylureas
- CGM should be used in all who are at risk for hypoglycemia and/or have hypoglycemia unawareness
- Intermittent use (1-2 weeks) in patients with type 2
 DM might be more effective than daily fasting levels in guiding the need for medication adjustment or advancing to new medications

How Does Continuous Glucose Monitoring Work?

- Sensor: measures glucose levels just underneath the skin Sensor Applicator: (Disposable) used to insert the sensor
- 2. Transmitter: wirelessly sends data to the receiver
- Receiver: displays sensor glucose readings, trend graph, direction and rate of change arrow

Continuous Glucose Monitor

Real-time

- 7.14 When used properly, realtime continuous glucose monitoring in conjunction with intensive insulin regimens is a useful tool to lower A1C in adults with type 1 diabetes who are not meeting glycemic targets. A
- 7.16 Real-time continuous glucose monitoring should be used as close to daily as possible for maximal benefit. A

Intermittently scanned

 7.19 Intermittently scanned continuous glucose monitor use may be considered as a substitute for self-monitoring of blood glucose in adults with diabetes requiring frequent glucose testing C

Diabetes Technology:

CGM Accuracy Over Time

CGM Categories

Real-Time CGM (rtCGM)

- Dexcom G5
- Dexcom G6
- Medtronic Enlite (530G)
- Medtronic Guardian 3 (670G)
- Medtronic Guardian Connect
- Eversense

Intermittently Scanned CGM (isCGM), FCG

Freestyle Libre

Professional CGM (blinded CGM)

- Freestyle Libre Pro
- iPro2
- Dexcom G4/5 if blinded

Commercially Available CGM Devices rtCGM in the US isCGM

Dexcom G6

Medtronic 670G

Medtronic Guardian Connect

Freestyle Libre

Tandem X2

Overview of the CGM Category

Real-Time CGM

 Data transmitted continuously to a receiver or display device, which allows for alerts and alarms to be provided to the wearer without any action

Intermittently Scanned CGM

- Data not transmitted continuously from the sensor
- Results are available when the sensor is scanned with a reading device
- Full 24-h data can be captured and downloaded if the sensor is scanned at least every 8 hours
- No alerts or alarms without scanning

Medtronic CGM

Medtronic 670G

Medtronic Guardian Connect

108:

- Key unique features
 - First hybrid closed loop system
 - Modulates insulin infusion based on sensor glucose information
 - Predictive Low Glucose Suspend and Low Glucose Suspend
 - Calibration at least once every 12 hours (3-4x/day recommended)
 - 7 day sensor use
 - Acetaminophen sensitive
 - Approved for 14 years and older

- Stand-alone CGM system
- Key unique features
 - No receiver; display device is iOS phone only
 - Predictive Alert Schedules
 - 10-60 minute prediction of hypo-/ hyperglycemia based on threshold settings
 - Calibration at least once every 12 hours (4x/day recommended)
 - 7 day sensor
 - · Acetaminophen sensitive
 - Approved for 18 and older

Dexcom G6

- Stand-alone CGM system
- Display devices = Receiver and/or Android or iOS
 - Secondary displays with Android iOS wearables
- No calibration
 - Does accept calibrations
- No confirmatory fingersticks unless:
 - Symptoms do not match CGM reading
 - No CGM number and arrow
- Remote monitoring
- Urgent Low Soon Alert
- 10 day sensor wear
- Non-adjunctive and therapeutic
- Approved for 2 years and older

Abbott CGM

Freestyle Libre (personal version, USA)

- Stand-alone CGM system
- "Flash Glucose Monitoring" System
- Display devices = Receiver only
- Predictive Alerts
- No calibration
 - Does not accept calibrations
- Confirmatory fingersticks when:
 - Hypoglycemia <70 mg/dL
 - · Impending hypoglycemia
 - Rapidly changing glucose (≥ 2 mg/dL/min)
 - · Symptoms of hypo- or hyperglycemia
- day wear 14
- Non-adjunctive and therapeutic
- · Approved for Medicare
- · Approved for 18 years and older

How About Implanting the Sensor? Eversense System

Mobile App

Sensor that lasts up to 180 days

No weekly sensor insertion

No open wound

Removable and rechargeable

On-body vibe alerts

Gentle-on-skin adhesive

No extra device to carry
iOS and Android platform

Alarm settings and reports

Accuracy Comparisons of Available CGM Systems

	G6	Medtronic 670G Guardian 3		FreeStyle Libre ³
Overall MARD%	9.0	abdomen 10.6 (9.6 if 3-4 cal)	arm ² 9.1 (8.7 if 3-4 cal)	9.7
Overall %20/20	94	881	92 ²	91
Day 1 MARD%	9.3	13¹ 10.	3 ²	10.7
Day 1 %20/20	92	81¹ UN	K	87.4
Hypoglycemia %20/20 (within 20 mg/dL)	94	93 ²	93 ²	79.4

¹ Medtronic 670G User Guide, 2017.

² Christiansen et al., Diabetes Technol Ther. 2017 Aug 1 19(8): 446-456.

³ SSED, Abbott FreeStyle Libre, Oct 2017.

CGM Accuracy in Hypoglycemia Range (40-60 mg/dL)

¹Dexcom G6 CGM System User Guide, 2018.

²Summary of Safety and Effectiveness Data (SSED), Abbott FreeStyle Libre, Oct 2017. 3 Medtronic 670G User Guide, 2017.

Lower A1c and Improved Overall Quality of Glucose Control with MDI Patients on CGM

CGM Added to T1D Patients on MDI —> A1c down by 1.0% Within 6 Months

Baseline A1C = 8.6%	CGM Group (n=105)	Control Group (n=53)	Difference	P Value
Change in A1C from baseline Mean adjusted difference, % (99%CI)	-1.0%	-0.4%	-0.6% (0.8-0.3)	<.001
A1C Reduction ≥1.0% or A1C <	7.0% 52%	21%	31%	<.001
Time in Target (70-180mg/dL) Hypoglycemia (<70mg/dL) Hyperglycemia (>180mg/dL)	1 77 min/day 1 22 min/day 1 49 min/day	ono change 8 min/day 15 min/day		<.005 <.002 <.001
Glucose variability coefficient of variation, mean (SD), %	38 % (6)	42 (7)	-4 (-6 to -2)	<.001

Land Till and A MARK THEFT THE REPORT AND

IN CONTROL RCT: CGM Benefits in People with Impaired Hypoglycemia Awareness

Crossover CGM study In 52 participants with Impaired Hypoglycemia Awareness

Figure A – CGM derived hypoglycemia *p<0.05

Figure B – severe hypoglycemia †p=0.033

CGM Benefited Anyone with T1D Regardless of Age or Education

Age (A1c) 25-45 years = 0.9% ≥ 60 years = 1.0%

Diabetes Numeracy
Score
(A1c)
≤60% = 1.1%

>60% = 0.9%

Education (A1c)

≤ Bachelor's degree = 1.0% ≥ Bachelor's degree = 1.0%

A1c ≥8.5%

Average A1C reduction 1.3%

93% of patients wore CGM ≥ 6 days per week

Patients decreased SMBG ~1.5 finger sticks/day

GOLD: Reduction in Time Spent in Hypoglycemia with Continuous Use of CGM

Freestyle Libre CGM Outcome – Type 2 IIT Diabetes

REPLACE: Randomized trial of 224 adult IIT users with T2D

- FreeStyle Libre reduced hypoglycemia by more than 50%
- Nighttime hypoglycemia improved with FreeStyle Libre
- FreeStyle Libre improved quality of life and patient-reported outcome measures

"Seniors": T1D and T2D, insulin taking

97% used CGM > 6 days/wk

Summary of the Clinical Evidence Around CGM As Standard of Care

- It is NOT about how you deliver insulin, it is about using CGM
- CGM needs to be worn on a near daily basis for sustaining clinical benefit
- CGM has a broad value to all different types of patients
 - All patients (T1D and T2D) on intensive insulin therapy regimens
 - Hypoglycemia/hypoglycemia unawareness
 - Patients with high A1c are candidates for CGM
- CGM is an appropriate first technology to be added to a patient's diabetes management regimen*
- Patients who do not carb count, do not do 'diabetes math' well, at all education levels and ages seem to benefit from CGM

The Ideal Candidate for CGM

- Any patient treated by intensive insulin therapy
- Experiencing frequent hypoglycemia
- Hypoglycemia unawareness
- Excessive glucose variability
- Varying and/or intensive activity
- Desire to improve glycemic control
- Willing and able to use CGM on a nearly daily basis
- Willing and able to learn how to use device and receive ongoing education

Which Patients Are Candidates (continued)?

- Children
- ▶ Interested in an insulin pump or wish to own CGM
- To convince patients to progress therapy
- Not at treatment goals but trying so hard to be
- Gastroparesis
- Needs/wants to make lifestyle changes

Benefits to Patients

- Help warn signs of high and/or low glucose levels
- Alert to be pro-active
- Alert to nocturnal "lows"
- Gives feedback on effect on glucose of food, activity, stress and medications
- Provides constant information, not a point in time
- May provide real time information to family members/ physicians if remote applications are used

Why Use Professional CGM in Your Practice?

- Provides insight into trending information/pattern management
- Identifies insulin action (insulin dose effect) and potential need for additional adjustments/medications to control postprandial glucose
- Provides information about timing of food digestion and timing of insulin administration
- Provides continuous data for overnight basal testing and assessment of nocturnal hypoglycemia
- Find patterns that otherwise could not be detected by finger stick alone
- Find patterns of undetected low BG in patients at treatment goal
- Allows for efficiently and effectively identifying areas of clinical challenges and applying appropriate medical management to address that specific clinical issue.
- And so much more...

How to Interpret a CGM Report

- Check for adequate data
- Check for factors that affect glucose: food, medications, exercise
- Talk to patient about Time in Range
- Look for patterns of low or high glucose
- Look for areas of high glucose variability
- Agree on an action plan

Stepwise Approach to Interpreting CGM Reports

- Fix lows first
 - Overnight
 - Throughout the day
- Fix overnight hyperglycemia
 - Look to dinner and/or bedtime control
- Fix pre-prandial hyperglycemia
- Fix post-prandial hyperglycemia
- Address lifestyle issues

Why GMI? A New Way to Gauge Glycemic Management

- Expresses mean CGM glucose in patient friendly A1C
- Replaces estimated A1C (eA1C)
- Avoids confusion when eA1C and laboratory A1C did not match
- Talk to your patients that the GMI and lab A1C may not match due to differences in lifespan of RBC, timing of lab vs. CGM data, A1C is variable
 - About 50% of time absolute difference between GMI and lab A1C will be ≥0.3%

For the math majors!

GMI (%) =
$$3.31 + 0.02392$$

× [mean glucose in mg/dL]

Table 1—GMI calculated for various CGM-derived mean glucose concentrations				
CGM-derived mean glucose (mg/dL)	GMI (%)*			
100	5.7			
125	6.3			
150	6.9			
175	7.5			
200	8.1			
225	8.7			
250	9.3			
275	9.9			
300	10.5			
350	11.7			

CPT Codes for Professional and Personal CGM

- 95249 CGM patient provided equipment, sensor placement, hook-up, calibration of monitor, patient training, and printout
- 95250 CGM HCP (office) provided equipment, sensor placement, hook-up, calibration of monitor, patient training, removal of sensor, and printout
- 95251 CGM analysis, interpretation and report
 - Can be billed monthly on ongoing basis
- General comments:
 - All codes require a minimum of 72 hours of data
 - Use -25 modifier for CGM codes if billing same day as a Problem Visit code (99212-99215) if significant an separately identifiable service took place
 - le 99212-99215: Pre-CGM evaluation (+) -25 95250: CGM start-up and instruction

Physician Reimbursement of CGM

Two components:

- Who owns the equipment?
 - Patient or Physician
 - Different codes
 - Service occurs over more than one day
 - Minimum of 72 hours of data
 - Download of receiver must occur in providers office
 - Service is charged on the day of the day of download
 - No physician work involved
 - Interpretation of Data
 - Minimum of 72 hours
 - Non face to face
 - Limitations of who can bill MD, NP, PAs

Patient Access to CGM - Medicare

Current Medicare guidelines will cover CGM for therapeutic monitoring of blood sugars if

- Patient has diabetes (type 1 or 2)
- 2. Insulin regimen requires frequent adjustment by the beneficiary on basis of BGM or CGM
- 3 or more injections per day or using an insulin pump
- Testing blood sugar 4 or more times a day
- Every 6 months following initial prescription of CGM, the treating practitioner has an inperson visit with the beneficiary to assess adherence to their CGM regimen and diabetes treatment plan

DOB: 04/27/1945 Practice Phone: 7876282151 PRINTED: 04/21/2019

CGM Glucose Pattern Summary

Below 70 mg/dL (below 54 mg/dL: 0%)

May 22, 2018 - June 5, 2018 (15 Days)

-8%

SR 73 y/o male
Type 2 Diabetes Mellitus x 16 years
Insulin user for several years
Current Rx: 60 u Lantus hs + Victoza 1.8 mg d
Stable weight BMI= 38 Kg/mt²
Asymptomatic
HTN; Dyslipidemia; ASCVD; CKD Stage III with
Proteinuria
Hb A1c 9.4%

Ambulatory Glucose Profile

Curves/plots represent glucose frequency distributions by time regardless of date

SR 73 y/o male

Type 2 Diabetes Mellitus x 16 years

Insulin user for several years

Current Rx: Current Rx: Humulin U500 twice daily

+ Victoza 1.6 mg daily

Stable weight BMI= 38 Kg/mt²

Asymptomatic

HTN; Dyslipidemia; ASCVD; CKD Stage III with

Proteinuria

HbA1c 7.6 %

DOB: 04/27/1945 Practice Phone: 7876282151

CGM Glucose Pattern Summary

February 19, 2019 - February 27, 2019 (9 Days)

PRINTED: 04/21/2019

CGM Device: FreeStyle Libre Pro [N/A]%

[N/A]% Compliant w/Calibration*

00% Time worn

*Not applicable to FreeStyle Libre or FreeStyle Libre Pro which do not require calibration.

Summary

DOB: 04/27/1945 Practice Phone: 7876282151

CGM Glucose Pattern Summary

May 22, 2018 - June 5, 2018 (15 Days)

LibreView

PRINTED: 04/21/2019

CGM Device: FreeStyle Libre Pro [N/A]% Compliant w/Calibration* 100% Time Worn

*Not applicable to FreeStyle Libre or FreeStyle Libre Pro which do not require calibration.

Summary

DOB: 04/27/1945 Practice Phone: 7876282151

CGM Glucose Pattern Summary

February 19, 2019 - February 27, 2019 (9 Days)

LibreView

PRINTED: 04/21/2019

CGM Device: FreeStyle Libre Pro [N/A]% Complian

[N/A]% Compliant w/Calibration* 100% Time Worn

*Not applicable to FreeStyle Libre or FreeStyle Libre Pro which do not require calibration.

Summary

DC

72 y/o male Diabetes Mellitus since age 32 Co-morbidities: HTN, CKD Stage 3, Dyslipidemia, microalbuminuria

Insulin user for several years

Daily Glucose Summary

197 mg/di.

12 July 2017 - 24 July 2017 (13 days)

Glucose

12 Jul

DC

72 y/o male Diabetes Mellitus since age 32 Co-morbidities: HTN, CKD Stage 3, Dyslipidemia, microalbuminuria Insulin user for several years

HbA1c= 6.0 %

Daily Glucose Summary

12 February 2018 - 26 February 2018 (15 days)

FreeStyle Libre Pro

DC

72 y/o male Diabetes Mellitus since age 32 Co-morbidities: HTN, CKD Stage 3, Dyslipidemia, microalbuminuria Insulin user for several years

Daily Glucose Summary

1 June 2018 - 15 June 2018 (15 days)

FreeStyle Libre Pro

DOB: 05/08/1939 Practice Phone, 7876282151 PRINTED: 04/21/2019

CGM Glucose Pattern Summary

December 10, 2018 - December 21, 2018 (12 Days)

MA 77 y/o male
Diabetes Type 2 since 1992
Co-morbidities: HTN; Dyslipidemia;
CKD Stage II with Proteinuria
Asymptomatic
Stable weight BMI= 28 Kg/mt²
Hb A1c= 7.2 %
Current Rx:
Glipizide XL 10 mg d

Janumet 50/1000 mg po bid

ions by time regardless of date

CGM Glucose Pattern Summary

January 23, 2019 - February 3, 2019 (12 Days)

FreeStyle	JLGW361-	1/26/2019 0:28	0	96
FreeStyle	JLGW361-	1/26/2019 0:43	0	87
FreeStyle	JLGW361-	1/26/2019 0:58	0	80
FreeStyle	JLGW361-	1/26/2019 1:13	0	75
FreeStyle	JLGW361-	1/26/2019 1:28	0	70
FreeStyle	JLGW361-	1/26/2019 1:43	0	65
FreeStyle	JLGW361-	1/26/2019 1:58	0	60
FreeStyle	JLGW361-	1/26/2019 2:13	0	57
FreeStyle	JLGW361-	1/26/2019 2:28	0	56
FreeStyle	JLGW361-	1/26/2019 2:43	0	57
FreeStyle	JLGW361-	1/26/2019 2:58	0	56
FreeStyle	JLGW361-	1/26/2019 3:13	0	55
FreeStyle	JLGW361-	1/26/2019 3:28	0	57
FreeStyle	JLGW361-	1/26/2019 3:43	0	60
FreeStyle	JLGW361-	1/26/2019 3:58	0	62
FreeStyle	JLGW361-	1/26/2019 4:13	0	65
FreeStyle	JLGW361-	1/26/2019 4:28	0	64
FreeStyle	JLGW361-	1/26/2019 4:43	0	65
FreeStyle	JLGW361-	1/26/2019 4:58	0	66
FreeStyle	JLGW361-	1/26/2019 5:13	0	65
FreeStyle	JLGW361-	1/26/2019 5:28	0	64
FreeStyle	JLGW361-	1/26/2019 5:43	0	63
FreeStyle	JLGW361-	1/26/2019 5:58	0	63
FreeStyle	JLGW361-	1/26/2019 6:13	0	69
FraaStyla	II GW361-1	1/26/2019 6:28	0	72

DB: U//U1/1941 Practice Phone: /6/6262151

CGM Glucose Pattern Summary

March 5, 2019 - March 19, 2019 (15 Days)

HC 71 y/o female
Asymptomatic
Diabetes Type 2 x 19 years
Co-morbidities: HTN; Dyslipidemia
Stable weight BMI= 38 Kg/mt²
Hb A1c= 6.9 %
Current Rx:
Glucovance 5/500 mg po bid
Januvia 100 mg po d

tributions by time regardless of date

CGM Glucose Pattern Summary

July 17, 2018 - July 29, 2018 (13 Days)

Diabetes since 1999
Insulin user for over 15 years
Stable weight BMI= 34.9 Kg/mt²
Hb A1c= 8.3 %
Current Rx:
NPH 35 u + Humalog 15 u ac am

Lerns
NPH 20 u + Humalog 15 u am ac pmore Viel

AA 67 y/o female

DOB: 04/19/1951 Practice Phone: 7876282151 PRINTED: 04/23/2019

CGM Glucose Pattern Summary

January 10, 2019 - January 18, 2019 (9 Days)

On insulin Pump for several years Stable weight BMI= 38 Kg/mt² Co-morbidities: HTN; Dyslipidemia; ASCVD; CKD Stage III with

MHAT TO DOS

My Pump always gives me the same answer

No Insulin and maybe eat carbs

Take a Larger than usual dose

Before

Food + Correction = Insulin Dose

Now

Food + Correction + Arrow = Insulin Dose

Previous Methods to Adjusting Insulin Dose Using Trend Arrows Not all arrows are the same

Dexcom G5/G6		Medtronic 630G/670G		Abbo	Abbott FreeStyle Libre	
Trend Arrow	Meaning	Trend Arrow	Meaning	Trend Arrow	Meaning	
11	Glucose is rapidly rising Increasing >3 mg/dL/min	†††	Glucose is rising >3 mg/dL/min			
1	Glucose is rising Increasing 2-3 mg/dL/min	† †	Glucose is rising 2–3 mg/dL/min	1	Glucose is rising quickly >2 mg/dL/min	
7	Glucose is slowly rising Increasing 1–2 mg/dL/min	†	Glucose is rising 1–2 mg/dL/min	7	Glucose is rising 1–2 mg/dL/min	
→	Glucose is steady Increasing/decreasing <1 mg/dL/min		Sensor glucose is not rising or falling quickly	→	Glucose is changing slowly <1 mg/dL/min	
*	Glucose is slowly falling Decreasing 1–2 mg/dL/min	+	Glucose is falling 1–2 mg/dL/min	7	Glucose is falling 1–2 mg/dL/min	
+	Glucose is falling Decreasing 2-3 mg/dL/min	++	Glucose is falling 2–3 mg/dL/min	+	Glucose is falling quickly >2 mg/dL/min	
++	Glucose is rapidly falling Decreasing >3 mg/dL/min	+++	Glucose is falling >3 mg/dL/min		- ;	

Summary Using Trend Arrows to Fine-Tune Insulin Doses: The New 'Standard' Approach

- This is a starting point
- Start using the approach at mealtimes
- Insulin stacking will continue to be a challenge
- Individualize the approach for your patient/family
 - Continue education and refinement with patients
- Goal is to increase time in range; reduce excursions

